
Download and Prepare WHOI-Plankton Data
Source:R/ifcb_prepare_whoi_plankton.R
ifcb_prepare_whoi_plankton.Rd
This function downloads manually annotated images from the WHOI-Plankton dataset (Sosik et al. 2015) and generates manual
classification files in .mat
format that can be used to train an image classifier using the ifcb-analysis
MATLAB package (Sosik and Olson 2007).
Usage
ifcb_prepare_whoi_plankton(
years,
png_folder,
raw_folder,
manual_folder,
class2use_file,
skip_classes = NULL,
dashboard_url = "https://ifcb-data.whoi.edu/mvco/",
extract_images = FALSE,
download_blobs = FALSE,
blobs_folder = NULL,
download_features = FALSE,
features_folder = NULL,
parallel_downloads = 5,
sleep_time = 2,
multi_timeout = 120,
convert_filenames = TRUE,
convert_adc = TRUE,
quiet = FALSE
)
Arguments
- years
Character vector. Years to download and process. For available years, see https://hdl.handle.net/1912/7341 or
ifcb_download_whoi_plankton
.- png_folder
Character. Directory where
.png
images will be stored.- raw_folder
Character. Directory where raw files (
.adc
,.hdr
,.roi
) will be stored.- manual_folder
Character. Directory where manual classification files (
.mat
) will be stored.- class2use_file
Character. File path to
.mat
file to store the list of available classes.- skip_classes
Character vector. Classes to be excluded during processing. For example images, refer to https://whoigit.github.io/whoi-plankton/.
- dashboard_url
Character. URL for the IFCB dashboard data source (default: "https://ifcb-data.whoi.edu/mvco/").
- extract_images
Logical. If
TRUE
, extracts.png
images from the downloaded archives and removes the.zip
files. IfFALSE
, only downloads the archives without extracting images. Default isFALSE
.- download_blobs
Logical. Whether to download blob files (default: FALSE).
- blobs_folder
Character. Directory where blob files will be stored (required if
download_blobs = TRUE
).- download_features
Logical. Whether to download feature files (default: FALSE).
- features_folder
Character. Directory where feature files will be stored (required if
download_features = TRUE
).- parallel_downloads
Integer. Number of parallel IFCB Dashboard downloads (default: 10).
- sleep_time
Numeric. Seconds to wait between download requests (default: 2).
- multi_timeout
Numeric. Timeout for multiple requests in seconds (default: 120).
- convert_filenames
Logical. If
TRUE
(default), converts filenames of the old format"IFCBxxx_YYYY_DDD_HHMMSS"
to the new format (DYYYYMMDDTHHMMSS_IFCBXXX
).- convert_adc
Logical. If
TRUE
(default), adjusts.adc
files from older IFCB instruments (IFCB1–6, with filenames in the format"IFCBxxx_YYYY_DDD_HHMMSS"
) by inserting four empty columns after column 7 to match the newer format.- quiet
Logical. Suppress messages if TRUE (default: FALSE).
Details
This function requires a python interpreter to be installed. The required python packages can be installed in a virtual environment using ifcb_py_install()
.
This is a wrapper function for the ifcb_download_whoi_plankton
, ifcb_download_dashboard_data
and ifcb_create_empty_manual_file
functions and used for downloading, processing, and converting IFCB data.
Please note that this function downloads and extracts large amounts of data, which can take considerable time.
The training data prepared from this function can be merged with an existing training dataset using the ifcb_merge_manual
function.
To exclude images from the training dataset, either exclude the class completely with the skip_classes
argument,
or set extract_images = TRUE
and manually delete specific .png
files from the png_folder
and rerun ifcb_prepare_whoi_plankton
.
If convert_filenames = TRUE
, filenames in the
"IFCBxxx_YYYY_DDD_HHMMSS"
format (used by IFCB1-6)
will be converted to IYYYYMMDDTHHMMSS_IFCBXXX
, ensuring compatibility with blob extraction in ifcb-analysis
(Sosik & Olson, 2007), which identified the old .adc
format by the first letter of the filename.
If convert_adc = TRUE
and
convert_filenames = TRUE
, the
"IFCBxxx_YYYY_DDD_HHMMSS"
format will instead be converted to
DYYYYMMDDTHHMMSS_IFCBXXX
. Additionally, .adc
files will be modified to include four empty columns
(PMT-A peak, PMT-B peak, PMT-C peak, and PMT-D peak), aligning them with the structure of modern .adc
files
for full compatibility with ifcb-analysis
.
References
Sosik, H. M. and Olson, R. J. (2007), Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr: Methods 5, 204–216.
Sosik, H. M., Peacock, E. E. and Brownlee E. F. (2015), Annotated Plankton Images - Data Set for Developing and Evaluating Classification Methods. doi:10.1575/1912/7341
Examples
if (FALSE) { # \dontrun{
# Download and prepare WHOI-Plankton for the years 2013 and 2014
ifcb_prepare_whoi_plankton(
years = c("2013", "2014"),
png_folder = "whoi_plankton/png",
raw_folder = "whoi_plankton/raw",
manual_folder = "whoi_plankton/manual",
class2use_file = "whoi_plankton/config/class2use_whoiplankton.mat"
)
} # }