
Count Cells from TreeBagger Classifier Output
Source:R/ifcb_summarize_class_counts.R
ifcb_summarize_class_counts.Rd
This function summarizes class results for a series of classifier output files and returns a summary data list.
Arguments
- classpath_generic
Character string specifying the location of the classifier output files. The path should include 'xxxx' in place of the 4-digit year (e.g., 'classxxxx_v1/').
- hdr_folder
Character string specifying the directory where the data (hdr files) are located. This can be a URL for web services or a full path for local files.
- year_range
Numeric vector specifying the range of years (e.g., 2013:2014) to process.
- use_python
Logical. If
TRUE
, attempts to read the.mat
file using a Python-based method. Default isFALSE
.
Value
A list containing the following elements:
- class2useTB
Classes used in the TreeBagger classifier.
- classcountTB
Counts of each class considering each target placed in the winning class.
- classcountTB_above_optthresh
Counts of each class considering only classifications above the optimal threshold for maximum accuracy.
- ml_analyzedTB
Volume analyzed for each file.
- mdateTB
Dates associated with each file.
- filelistTB
List of files processed.
- classpath_generic
The generic classpath provided as input.
- classcountTB_above_adhocthresh (optional)
Counts of each class considering only classifications above the adhoc threshold.
- adhocthresh (optional)
The adhoc threshold used for classification.
Details
If use_python = TRUE
, the function tries to read the .mat
file using ifcb_read_mat()
, which relies on SciPy
.
This approach may be faster than the default approach using R.matlab::readMat()
, especially for large .mat
files.
To enable this functionality, ensure Python is properly configured with the required dependencies.
You can initialize the Python environment and install necessary packages using ifcb_py_install()
.
If use_python = FALSE
or if SciPy
is not available, the function falls back to using R.matlab::readMat()
.