Skip to contents

Reads a MATLAB classifier output file (from ifcb-analysis random forest classifier) and extracts class predictions.

Usage

load_from_classifier_mat(
  mat_path,
  sample_name,
  class2use,
  roi_dimensions,
  use_threshold = TRUE
)

Arguments

mat_path

Path to classifier MAT file (matching pattern *_class*.mat)

sample_name

Sample name (e.g., "D20230101T120000_IFCB134")

class2use

Character vector of class names (unused, kept for API consistency)

roi_dimensions

Data frame from read_roi_dimensions

use_threshold

Logical, whether to use threshold-based classification (TBclass_above_threshold) or raw predictions (TBclass)

Value

Data frame with columns: file_name, class_name, score, roi_area

Examples

if (FALSE) { # \dontrun{
# Load classifier predictions
dims <- read_roi_dimensions("/data/raw/2023/D20230101/D20230101T120000_IFCB134.adc")
classifications <- load_from_classifier_mat(
  mat_path = "/data/classified/D20230101T120000_IFCB134_class_v1.mat",
  sample_name = "D20230101T120000_IFCB134",
  class2use = NULL,
  roi_dimensions = dims,
  use_threshold = TRUE
)
head(classifications)
} # }