Skip to contents

Saves the current annotations for a sample, including: - MAT file compatible with ifcb-analysis (requires Python) - Validation statistics CSV files - PNG images organized by class

Usage

save_sample_annotations(
  sample_name,
  classifications,
  original_classifications,
  changes_log,
  temp_png_folder,
  output_folder,
  png_output_folder,
  roi_folder,
  class2use_path,
  annotator = "Unknown"
)

Arguments

sample_name

Sample name (e.g., "D20230101T120000_IFCB134")

classifications

Current classifications data frame

original_classifications

Original classifications data frame (for comparison)

changes_log

Changes log data frame from create_empty_changes_log

temp_png_folder

Path to temporary folder with extracted PNG images

output_folder

Output folder path for MAT files

png_output_folder

PNG output folder path (organized by class)

roi_folder

ROI folder path (for ADC file location)

class2use_path

Path to class2use file

annotator

Annotator name for statistics

Value

TRUE on success, FALSE on failure

Examples

if (FALSE) { # \dontrun{
# Save annotations for a sample
success <- save_sample_annotations(
  sample_name = "D20230101T120000_IFCB134",
  classifications = current_classifications,
  original_classifications = original_classifications,
  changes_log = changes_log,
  temp_png_folder = "/tmp/png",
  output_folder = "/data/manual",
  png_output_folder = "/data/png_output",
  roi_folder = "/data/raw",
  class2use_path = "/data/class2use.mat",
  annotator = "John Doe"
)
} # }